技術名称:無機系ライニングMC工法

申請者名:丸栄コンクリート工業株式会社

技術部門:長寿命化

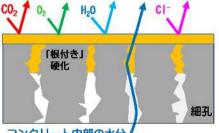
登録 区分

区分3:活用促進技術

区分2:試行段階技術

区分1:開発,改良支援技術

■技術概要・ポイント(写真・図面等を適宜貼付)


【コンクリート表面保護工(表面被覆工・表面含浸工)として コンクリート劣化因子の侵入抑制を行い、長寿命化を図る技術】

- 〇従来の表面被覆工 (無機系・有機系) は、コンクリート内在水分の 影響により剥がれる懸念がある。
- ○従来の表面含浸工はシラン系、ケイ酸塩系含浸材であり、前者は塗 布後数年で流亡し、後者は既設コンクリート構造物での効果は期待 しづらい。
- 〇無機系ライニングMC工法は、 表面被覆工と表面含浸工の両方の性質 を持つ無機系封孔材(パーミエイト)を、適切な施工管理の基、作 業を行うことで、コンクリート内部に浸透し硬化することから剝が れにくく、長期間の劣化因子の侵入抑性を行うことができる。

【付着力試験状況】

【劣化因子の浸入抑制効果】

コンクリート内部の水分

■公共事業における施工・活用方法

本技術は従来技術である表面被覆工とは異なり、表面含浸材のようにコン クリート内部に浸透し固化することにより、コンクリート内部から根付き 硬化するので剥がれしくいといった特色がある。また、施工費用が安価で あり、30年以上の耐摩耗性を有することからLCCに優れる。

6. 200円/m2×1/30年=206円/m2/年

■適用条件等(自然条件・現場条件等の活用上の留意点)

適用事業

(1.)道路 (2.)河川 3. ダム 4. 砂防 (5.)港湾 (6.)海岸 7. 上水道 8. 下水道 9. 公園 (10) その他 11. 全般

○塩害・中性化・凍害の抑制

無機系ライニングMC工法は、パーミエイトがコンクリートの微細孔に 浸透し、封孔することで、水・二酸化炭素・酸素・塩分等のコンク リート劣化因子の侵入を抑制する。

- 〇透明色の使用でコンクリート素地の状況確認が可能。 透明色を使用すれば、コンクリート劣化の進行状況を直接目視するこ とが出来る。
- ○土木用防汚材料Ⅱ種((一財)土木研究センター)合格により、トン ネル等の視線誘導(白色塗料入り)に用いることができ、また自浄機 能や汚れの除去性能に優れる。

【透明タイプ】

【調色タイプ】

【港湾施設 張出し床板】

■技術の成立性

○次のコンクリート表面被覆工の性能照査項目などに合格

・しゃ塩性 : 5.0×1.0-2mg/cm2·日以下

・塗膜とコンクリートの付着強度: 1.5kN/mm2以上

• 酸素透過性 : 5.0×1.0-2mg/cm2·日以下 • 水蒸気诱渦量 : 5.0×1.0-2mg/cm2·日以下

• 中性化抑止性 :中性化ふかさ1mm以下

• 対流酸性 : 10%の硫酸溶液(60日間浸せき)

で溶出無し

開発 体制等 1. 単独 2. 共同研究(民民)

3. 共同研究(官民) 4. 共同研究(民学)

開発会社:株式会社ディー・アンド・ディー 販売会社:丸栄コンクリート工業株式会社

副部門(副次的効果)

部門

技術名称:無機系ライニングMC工法

申請者名:丸栄コンクリート工業株式会社

■活用の効果(技術部門(主部門)のアピールポイント)

※従来技術名(表面被覆工)

	活用の効果			発現する効果			
項目				申請技術	従来技術		
経済性	向上 (43.7 %)	同程度	低下 (%)	コンクリートの引張応力を超える強力な付着力により、長期(30年)に渡る劣化因子の侵入抑止性があるので、供用期間を考えた場合、施工回数を低減でき、LCCが向上する。	表面被覆工は一般に20年程度が効果の期間とされるケースが多く、供用期間を考えた場合、申請技術と比べてLCCは低下する。 (塗布材料だけでなく足場などの設置が必要)		
工程	短縮 (29 %)	同程度	增加	同工法は、液体材料を刷毛やローラーにより塗布 することで、施工性に優れ、少ない施工日数で作業 が可能なため、工期短縮に貢献する。	表面被覆工の場合、プライマー塗布、表面ライニング 等多くの作業工程が必要となることから1日当りの施工 範囲が少なく、作業日数が必要である。		
品質• 出来形	向上	同程度	低下	工法研究会として施工管理基準を設け、温度管理・使用量管理を行うとともに、最も重要となる付着力試験を実施している。付着力は、1.5N/mm2以上の性能規定である。	表面被覆工については、同左。		
安全性	向上	同程度	低下	JWWA K135水道溶出試験を合格、JIS A1901 揮発性有機化合物(VOC)試験等により溶剤は不検出。	表面被覆工についても必要な安全性は確保されてい る。		
施工性	向上	同程度	低下	工法研究会で規定する管理に基づき、刷毛やロー ラーにより塗布することができるので、施工性に優 れる。	表面被覆工の場合は、プライマー塗布、表面ライニング等多くの作業工程が必要となる。		
環境	向上	同程度	低下	JWWA K135水道溶出試験をクリア、JIS A1901 揮発性有機化合物(VOC)試験等により溶剤は不検出。環境負荷は少ない。	表面被覆工についても環境負荷は少ない。		
維持管理性	向上	同程度	低下	コンクリート内部に浸透し硬化することで剝がれにくく、劣化因子の侵入抑止性効果が持続するため維持管理性能に優れる。	表面被覆工(特に有機系被覆工)は、施工環境によっては剥がれ等が発生する。		
その他	向上	同程度	低下	対硫酸性があることから、硫酸が発生する環境下でも提供可能である。	一般の表面被覆材料では、対流酸性がない。		

技術名称:無機系ライニングMC工法

■活用実績

発注者	県内件数	県外件数	
広島県	2	件	_
その他公共機関	3	件	199件
民間等	1	件	87件

発注者	年度	公共工事名(事業名)				
京都府	R7	木津川運動公園公共都市公園施設整備工事				
内閣府 沖縄開発局	R6	那覇空港エプロン周辺施設外1件工事				
国土交通省	R6	広島空港滑走路端安全区域用地造成等工事 (その3)				
三重県	R6	黒瀬排水路改良工事				
呉市役所	R6	令和6年度 川原石臨港道路補修工事				
呉市役所	R5	令和5年度 川原石臨港道路補修工事				
国土交通省	R4	高知空港GSE車両通行等改良工事				
呉市役所	R4	令和4年度 川原石臨港道路補修工事				
姫路市役所	R3	野田川城陽幹線下水工事				

申請者名:丸栄コンクリート工業株式会社

■国土交通省(NETIS)への登録状況

申請地方 整備局名	登録年月日	登録番号	評価 (事前・事後)	
なし				

■建設技術審査証明の発行状況

発行機関名	証明書発行年月日	証明書番号	
なし			

■国及び都道府県等による技術的審査を受けている状況

特になし。

■知的財産等

特許・実用新案					番	号
特許	1. あり	2. 出願中	3. 出願予定	4. なし		
実用新案	1. あり	2. 出願中	3. 出願予定	4. なし		

■当該技術の課題と今後の改良予定

特になし。