技術名称:繊維補強超速硬ポリマーセメントモルタル『リフレモルセットSF』申請者名:住友大阪セメント株式会社

技術部門(主):効率化 部門

登録 区分

区分3:活用促進技術

区分2:試行段階技術

区分1:開発·改良支援技術

■技術概要・ポイント (写真・図面等を適宜貼付)

【耐久性、付着性の向上、はつり量低減による経済性の向上】・劣化したコンクリート構造物上面を、繊維補強超速硬ポリマーセメントモルタルまたは、専用骨材を添加したコンクリートにより断面修復を行う技術。

- ・モルタル配合を使用した場合、従来技術では対応不可能であった薄層補修にも適用可能。
- ・静弾性係数を既設コンクリート同等に配合設計しており疲労耐久 性が向上する。
- 母材コンクリートと高い付着性を有する。
- はつり量が低減され、環境・経済性が向上できる。
- ・流動性も高いため鉄筋裏への充填性が向上する。

リフレモルセットSFの適用例と鉄筋裏への充填状況

■公共事業における施工・活用方法

- ·橋梁のRC床版の上面補修工事
- ・土間コンクリートの補修工事
- ・コンクリート構造物全般の断面修復工事

■適用条件等(自然条件・現場条件等の活用上の留意点)

適用事業

1. 道路 2. 河川 3. ダム 4. 砂防 5. 港湾 6. 海岸 7. 下水道 8. 公園 9. その他 (10) 全般

(1) 適用条件

- ①自然条件
 - ・施工時および養生時の気温は5~35℃で対応可。
 - ・雨天時もしくは雨天が予想される場合は施工不可。
- ②現場条件
 - ・混練スペースは、ハンドミキサの場合1m×1m=1m2程度 モルタルミキサの場合2m×2m=4m2程度
- (2) 適用範囲
- ①適用可能範囲
 - ・コンクリート構造物の補修工事(断面修復)
 - ・水が存在しない劣化部位
- ②特に効果の高い適用範囲
 - ・道路橋床版コンクリートの上面補修工事
 - 早期解放が求められる緊急工事

■技術の成立性

- ・モルタル配合は10~30mmの薄層補修に最適。 30mm以上はモルタル配合もしくは専用骨材を併用したコンクリート配合の選択が可能。
- ・柔らかく作業性が良好なため、鉄筋裏への充填が容易。
- ・高耐久性エポキシプライマーを使用することで高い付着力を得られる。
- ・2hrで10N/mm2以上、4hrで24N/mm2以上の初期圧縮強度を発現。
- ・水張状態での輪荷重走行試験では、従来技術比べて4倍の耐久力保持。
- ・モービル車での混練が可能なため、大容量・大断面の施工にも対応可能。

技術部門(副)(副次的効果)

開発 体制等 (1.)単独 2. 共同研究(民民) 3. 共同研究(官民) 4. 共同研究(民学)

開発会社:住友大阪セメント株式会社 販売会社: 当社販売店各社

協会:

部門

技術名称:繊維補強超速硬ポリマーセメントモルタル『リフレモルセットSF』申請者名:住友大阪セメント株式会社

■活用の効果(技術部門(主部門)のアピールポイント)

※従来技術名(超速硬コンクリート用パック詰め)

-F.D.	活用の効果		発現する効果		
項目			申請技術	従来技術	
経済性(向上 (42%) 同程度	低下 (%)	はつり量が低減できるため、材料使用量が抑えられ、経済性が向上する。 〈活用効果の根拠〉基準数量:20.00m² 832,952円	はつり量が多く、長期の工程と多くの人出を要し、人件費・機械設備等のコストがかさんでいた。 1,428,613円	
工程(短縮 (47%) 同程度	增加 (%)	はつり量が低減できるため、工程が短縮できる。 〈活用効果の根拠〉基準数量:20.00m² 1.6日	はつり量が多く、長期の工程を要する。 3.0日	
品質· (出来形	向上 同程度	低下	母材コンクリートとの高い付着性を有し、乾燥収縮 が小さく、静弾性係数が既設コンクリートに近いた め、品質の向上が図れる。	静弾性係数が高く、既設コンクリートとの差が大きいため、疲労耐久性が低下する。	
安全性	向上 同程度	低下	従来技術と同程度。	安全面に留意し作業を行えば、労働災害発生の危険 性は低い。	
施工性(向上 同程度	低下	流動性に優れ、鉄筋裏まで回りやすくなるため、施工性が向上する。 モルタルのため、従来の超速硬コンクリートでは対応不可能な薄層補修に適用可能。	鉄筋裏に確実に充填することができない。 コンクリートのため、薄層補修に適応不可。	
環境(向上 同程度	低下	はつり量が低減するため、産業廃棄物の発生量が減少し、周辺環境への影響が抑制される。	はつり量が多く、産業廃棄物の発生量が抑制されない。	
維持管理性	向上 同程度	低下	高い付着性、乾燥収縮の低減、静弾性係数が既設コンクリートに近いことなど、疲労耐久性が向上し、 劣化の遅延に寄与する。	申請技術と比較した場合は疲労耐久性が低い。	
その他	向上 同程度	低下	該当なし	該当なし	

技術名称:繊維補強超速硬ポリマーセメントモルタル『リフレモルセットSF』申請者名:住友大阪セメント株式会社

■活用実績

発注者	県内件数		県外件数	
広島県	1 1	件	_	
その他公共機関	6 🛉	件	168 件	
民間等	0 1	件	10 件	

民間等		0 件	10 件	
発注者 年度		公共工事名(事業名)		
国土交通省	R3	国道2号廿日市地区外橋梁補修工事		
西日本高速道路 (株)	R3	R1年度 山陽道広島管内舗装補修		
国土交通省	R3 国道185号棧道橋橋 函渠補修工、外工		§梁補修第4工事のうち ▶	
東日本高速道路 (株)	R3	,		
東日本高速道路 (株)	R3			
国土交通省	R2 令和元年度 飯田維持出		听管内橋梁補修工事	
広島県	R2	平成31年度一般県道日置上補修(防安交付金 長寿)地		
西日本高速道路 (株)	R1	平成29年度 山陽自動車道 広島高速道路事務所管内舗装補修工事		
西日本高速道路 (株)	H30	平成28年度 山陽自動車道(特定更新等) 広島高速道路事務所管内舗装補修工事 山陽自動車道 河内IC~岩国IC間舗装補修工事		
西日本高速道路 (株)	H29			

■国土交通省(NETIS)への登録状況

申請地方 整備局名	登録年月日	登録番号	評価 (事前・事後)
関東地方整備局	2017年10月27日	KT-170058-A	事後評価未実施技術

■建設技術審査証明の発行状況

発注機関名	証明書発行年月日	証明書番号

■国及び都道府県等による技術的審査を受けている状況 なし

■知的財産等

特許•実用新案				番 号
特許	① あり	2. 出願中	3. 出願予定 4. なし	特許第5573658号
実用新案	1. あり	2. 出願中	3. 出願予定 4. なし	

■当該技術の課題と今後の改良予定

なし