平成17年度地域研究者養成事業(ORT)「レーザを利用した溶接技術研修」

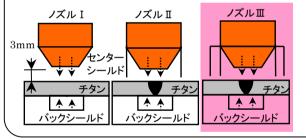
チタンのレーザ溶接におけるシールド方法

研修目的

チタンは、比較的活性な金属であるため、溶接時に大気中の酸素・窒素等と反応し、溶接品質が低下するという問題を抱えている。

本研修では、溶接部の外観色で溶接品質を判断し、健全な溶接が可能となるシールドガスの保持方法について検討する。

研修内容


シールドガスを長時間保持することを目的としたノズルII(アルミ箔を2重に巻いたもの)

を用いたいることにより溶接部の外観色は銀色となり、健全な溶接継手が得られた。

実験条件

被溶接材料 及び板厚	純チタン2種 1mm	β 系チタン 3mm		
レーザ出力	2000W	3500W		
溶接速度	3,4,5m/min	2,2.5,3m/min		
シールドガス 及び流量	アルゴン センターシールド 50L/min バックシールド 10L/min			
溶接ノズル	ノズル I , I , I			

溶接ノズル及びシールド方法

実験結果

純チタン2種、 β 系チタンの表ビードの外観色及び外観状態

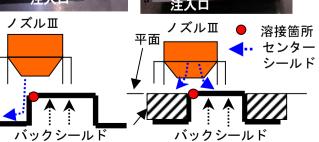
純チタン2種

β 系チタン

	溶接速度			溶接速度			
	3m/min	4m/min	5m/min		2m/min	2.5m/min	3m/min
ノズル I	青	紫	麦	ノズル I	青白色	青	麦
ノズルⅡ	金	金	金	ノズルⅡ	麦	金	金
ノズルⅢ	銀	銀	銀	ノズルⅢ	銀	銀	銀

外観状態

	純チタン2種	β 系チタン
ノズルⅢ を使用	The state of the s	


ノズルIIを用いることにより、健全な溶接継手が得られた。

応用展開

ノズル田をチタン製ゴルフヘッド,チタン製容器へ適用したが,ノズル田だけでは、不十分であり、製品側にシールドガスが保持できる補助具を併用することで、健全な溶接が可能となった。 ゴルフヘッド ゴルフヘッド(補助具取付) チタン製容器(補助具取付)

