他誌掲載論文(2020年10月~2021年9月)

Subtype screening of bla_{IMP} genes using bipartite primers for DNA sequencing

(Ryuji Kawahara*1, Masanori Watahiki*2, Yuko Matsumoto*3, Kaoru Uchida*2, Makiko Noda*4, Kanako Masuda, Chiemi Fukuda*5, Yuki Abe*6, Yukiko Asano*6, Kazunori Oishi*2, Keigo Shibayama*7, Hiroto Shinomiya*6, Jpn J Infect Dis., 31, doi: 10.7883, 2021)

Genes conferring carbapenem resistance have spread worldwide among gram-negative bacteria. Subtyping of these genes has epidemiological value due to the global cross-border movement of people. Subtyping of bla_{IMP} genes that frequently detected in Japan appears to be important in public health settings; however, there are few useful tools for this purpose. We developed a subtyping screening tool based on PCR direct sequencing, which targets the internal sequences of almost all bla_{IMP} genes. The tool used bipartite multiplex primers with M13 universal sequences at the 5'-end. According to in silico analysis, among the 78 known IMP-type genes, except for bla_{IMP-81}, 77 detected genes were estimated to be differentiated. In vitro evaluation indicated that sequences of amplicons of IMP-1, IMP-6, IMP-7, and IMP-20 templates were identical to their respective subtypes. Even if the amplicons were small or undetectable through the first PCR, sufficient amplicons for DNA sequencing were obtained through a second PCR using the M13 universal primers. In conclusion, our tool can be possibly used for subtype screening of blaIMP, which is useful for the surveillance of bacteria with bla_{IMP} in clinical and public health settings or environmental fields.

*¹Division of Microbiology, Osaka Institute of Public Health, *²Department of Bacteriology, Toyama Institute of Health, *³Microbiological Testing and Research Division, Yokohama City Institute of Public Health, *⁴Department of Infectious Diseases, Gifu Prefectural Research Institute for Health and Environmental Sciences, *⁵Department of Microbiology, Kagawa Prefectural Research Institute for Environmental Sciences and Public Health, *6Department of Microbiology, Ehime Prefectural Institute of Public Health and Environmental Science, *7Department of Bacteriology II, National Institute of Infectious Diseases.

(2) 瀬戸内海における海水中有機物のC:N:P比と 窒素・りん濃度の関係性について

(鈴木元治*1, 栢原博幸*2, 大島 韶*3, 中村 玄*4, 向井健悟*5, 藤田和男*6, 小田新一郎, 宇都宮涼*7, 浅川 愛*8, 管生伸矢*9, 安藤真由美*10, 秋吉貴太*11, 柳明 洋*2, 松尾 剛*13, 藤原建紀*14.15, 全国環境研会誌, 46, 3, 42-49, 2021)

瀬戸内海では、海水中有機物の濃度に関する調査は多く実施されているが、質に関する情報は少ない、本研究では、瀬戸内海の表層水について、溶存有機物(DOM)及び粒状有機物(POM)の炭素:窒素:りんモル比(C:N:P比)を測定し、窒素・りん濃度との関係性を調べた、調査した62測点の全てのC:N比及びC:P比は、POMは4割程度、DOMは9割以上がレッドフィールド比(C:N比=6.63、C:P比=106)よりも大きかった。また、有機態窒素・りん濃度が低い海域ほどC:N比及びC:P比が大きくなる傾向がみられ、その傾向はPOMよりもDOMのほうが顕著であった。C:N比及びC:P比の大きな有機物は、難分解性である傾向がある。このことから、瀬戸内海では、有機態窒素・りん濃度が低い低栄養の海域ほど、分解されにくいDOMの割合が大きいことが示唆された。

*1 (公財) ひょうご環境創造協会兵庫県環境研究センター, *2 (地独) 大阪府立環境農林水産総合研究所, *3大阪市立環境科学研究センター, *4堺市衛生研究所, *5神戸市健康科学研究所, *6岡山県環境保健センター, *7倉敷市環境監視センター, *8徳島県立保健製薬環境センター, *9徳島県危機管理環境部環境管理課(元徳島県立保健製薬環境センター, *10香川県環境保健研究センター, *11大分県衛生環境研究センター, *12大分県産業科学技術センター(元大分県衛生環境研究センター), *13北九州市環境局環境監視部環境監視課, *14京都大学名誉教授, *15いであ株式会社大阪支社