11 電子放出炭素膜の実用化に関する研究

筒本隆博 , 山本 晃

Application of field emission from carbon based film

Takahiro Tsutsumoto and Akira Yamamoto

In order to use carbon film for field emission display, c arbon films were deposited on silicon substrate by the hot-filament method using methane hydrogen gas, and technological problems were examined. Cobalt patterning on the silicon substrate for obtaining high field emission property resulted for low film adhesion. Gas deposition method drew thin cobalt pattern, which resulted for thin carbon film. Using large -scale deposition unit with the substrate movement mechanism, uniform carbon film could be deposited on a 4in-silicon wafer. Light emission at each cross point was observed using a pair of carbon line pattern and fluorescent line patterned screen.

キーワード:電界放出,コバルト,シリコン基板,ナノ粒子,大面積合成

1 緒 言

次世代テレビジョンとしてフラットパネルディスプ レイの開発が進められている。その一候補として,電 界放出型のディスプレイがあり,その表示素子を製造 するための材料として室温で電子を放出する,カーボ ンナノチューブ(CNT)¹⁾,ダイヤモンド薄膜²⁾などの 炭素材料が注目を集めている。我々も,モリブデン基 板にCoを蒸着し,その上に熱フィラメント法により成 膜した微細粒子状の炭素膜が CNTに匹敵する優れた電 子放出特性を示すことを発見し,それを用いたパター ン発光素子の試作を行ってきた³⁾。

そこで,本研究ではこれらの成果をもとに,微細加 工の可能なシリコンウエハ上への電子放出素子試作を 目指し,基板材料をシリコンウエハとして,その上へ の炭素膜の合成の効果を調べた。

2 実験方法

2.1 シリコンウエハ基板への炭素膜合成

図1にシリコンウエハ上への炭素膜の合成手順を示 す。炭素膜の微細パターンを形成させることを考え, 当初ガスデポジション法によるCoの下地成膜を考えて いた.しかしながらその上に合成した炭素膜が薄い, 炭素膜が剥離するなどの問題によりコバルトの塗布法 も検討した。なお,コバルトの塗布には,粒径約30µm のコバルト粉末を奥野製薬製の溶剤(G3-2596)に約 10mass%で混合し,それをハケ塗りした。 この2方法によりシリコンウエハ上へコバルトのラ インパターンを形成させ,さらにその上に熱フィラメ ント法により炭素膜を形成させた。そのときの合成条 件を表1に示す。

図1 炭素膜のラインパターン成膜の方法

表1	炭素膜の合成条件

基板	シリコンウエハ(20×20×0.5mm)
反応ガス	H ₂ -10%CH ₄ ,30 Torr
フィラメント温度	約2600
基板温度	900
合成時間	5~10分
下地Co成膜	ガスデポジション法、塗布法

図2 大面積合成のための基板台,フィラメント ユニットの構造

	衣 2 人間和	員奉攸への言成余件
基	板	4インチシリコンウエハ
気化	溶液	H ₃ BO ₃ /CH ₃ OH/CH ₃ COCH ₃ = 0.1 30 90
キャリアガス		H ₂
ガス济	記量(パブリング:それ以外)	68:300 SCCM
フィラメ	>ト温度	2350
基板	温度	710~870
合成	時間	18時間40分

2.2 大面積基板への合成

当初20cm×20cmの面積の基板への炭素膜合成を考え たが,シリコンウエハに炭素膜を合成することを考え 実用上の第一ステップとして4インチシリコンウエハ への合成を目指すこととした。そのため,まずフィラ メント長さをそれまでの15cmから25cmへと伸ばすた めの電極機構と,基板を横移動させる機構⁴⁾を併せ持 った図2のようなユニットを設計製作した。

このユニットを真空チャンバー内に設置して,直径4 インチのシリコンウエハへの炭素膜の合成を行った。 なお,ここで,炭素膜としては合成の均一性評価を目 視でできるダイヤモンド薄膜の合成条件を用いた。合 成条件を表2に示す。

2.3 **マトリクス発光実験**

シリコンウエハ上の炭素膜とITO透明導電膜上の蛍光 膜をライン状にパターン化し,それを直交に対向させ 配置し,両端に電圧を印加することにより,お互いの ラインの交差点での発光の様子を観察した。炭素膜の 下地であるコバルト膜は前述した塗布法によりライン 状に形成し,蛍光粉末はスピンコーターにより コ ーティングし,それを450 で焼成した後不要な部分を 擦り取ってラインの形成を行った。

このようにして形成した炭素膜,発光板を直交配置 して,0.7mmのスペーサーをいれて対向させ,電圧を印 加して,その発光の様子を観察した。

3 実験結果と考察

3.1 シリコンウエハ基板への炭素膜合成

図3にシリコンウエハ上に合成した炭素膜の様子を 示す。これより、図3(a)の下地のコバルト層をガス デポジション法により描画したものは、膜が薄く、一 部剥離していることがわかる。基板に振動を与えると 簡単に剥離した。一方、図3(b)の塗布法によりコバ ルト層を描画したものは、炭素膜も厚く密着性も(a) ほど悪くなかった。(b)の炭素膜は銀ペーストにより配 線することにより、電子放出による発光実験に用いる ことができた。

(a)の炭素膜が薄かったのは,ガスデポによる下地コ バルト層が薄いのが原因であると考えられ,塗布法に よる方法が簡易に厚いコバルト層を形成できることが わかった。

(a) (b) 図3 シリコンウエハ上に合成した炭素膜, 下地はコバルトで(a)ガスデポジショ ン法,(b)塗布法によりライン描画

3.2 **大面積基板への合成**

図4に試作した大面積基板への合成ユニットを示 す。

電極,基板台の下の基台は銅製で,下部には水冷の銅 パイプがはんだ付けされ,基板を冷却している。その 台を通して,電極,基板台を冷却する構造になってい る。また,基台の下には基板台を移動させるためのモ ーターがあり,プーリーを介してワイヤーで基板台と 結び付けられている。

図4 試作した大面積基板合成用ユニット。4 インチのシリコンウエハがのっている。

図 5 炭素膜を合成した4 インチシリコンウエハ (a) とその表面のSEM写真(b)

図5に炭素膜合成後の4インチシリコンウエハの概 観(a)とその表面のSEM写真(b)を示す。目視では全面に 均一に成膜されている。また,図5(b)より,膜表面 にはきれいなダイヤモンドのファセット面が現れ,相 晶も少なく,比較的高品質なダイヤモンドの多結晶体 であることがわかる。

~300V ~400V ~500V ~600V 印加電圧

図6 ラインパターン状の炭素膜,蛍光板を交差さ せ対向配置し,電圧印加したときの交差点で の発光の様子

3.3 マトリクス発光

図6にラインパターン状の炭素膜,蛍光板を直交さ せ対向配置し,電圧印加したときの交差点での発光の 様子を示す。印加電圧が500V以上になると,交差点が かなり明るくなった。ITO透明導電膜自体をラインパ ターン状にして,炭素膜,蛍光板の各ラインに電極を 配置することで,各マトリクスの独立発光も可能であ ると考えられる。

4 結 言

実用上の観点からシリコンウエハへの炭素膜の合成 を検討し,以下の知見を得た。

- コバルトを下地膜としてシリコンウエハ上へ炭素
 膜を合成すると,密着性が低い。
- (2) コバルト下地膜の処理は,塗布法の方がガスデポ ジション法より容易に厚い炭素膜が形成できる。
- (3) 25cmのフィラメント長さの大面積合成ユニットを 試作し、4インチのシリコンウエハに均一にダイヤ モンド薄膜を合成することができた。
- (4) ラインパターン状の炭素膜と蛍光板を直交させ対 向配置し,その両端に電圧を印加させ,ラインの交 差点での発光を確認した。

揻

- 1) 上村, 余谷, 長廻: J. Vac. Soc. Jpn. 42(1999) 8, 722
- 2) K. Okano et al: Nature, 381(1996) 9, 140

文

- 3) 筒本,山本:広島県西部工技研究報告,45(2002),64
- P. Koidl et al.: 2nd Int. Conf. on Application of Diamond films and Related Materials, edited by Yoshikawa et al. 1993, 87